

Technical specifications HB (Hexagonal Bolt DIN933)

Finishing:	Electro galva	nized						
Product	Number	Height	Width	Length	Dim A	Fmax	Unit	Packaging
		(mm)	(mm)	(mm)	(mm)	(kN)		(unit)
HB06-20-EG	10237	0	6	20	M6		ST	100
HB06-30-EG	10238	0	6	30	M6		ST	100
HB08-20-EG	10239	0	8	20	M8		ST	100
HB08-30-EG	10240	0	8	30	M8		ST	100
HB08-40-EG	10241	0	8	40	M8		ST	100
HB10-20-EG	10231	0	10	20	M10		ST	100
HB10-30-EG	10232	0	10	30	M10		ST	100
HB10-40-EG	10233	0	10	40	M10		ST	100
HB10-60-EG	14376	0	10	60	M10		ST	100
HB10-70-EG	14377	0	10	70	M10		ST	100
HB12-20-EG	10234	0	12	20	M12		ST	100
HB12-30-EG	10235	0	12	30	M12		ST	100
HB12-40-EG	10236	0	12	40	M12		ST	100

Finishing:	Dipped galva	nized						
Product	Number	Height	Width	Length	Dim A	Fmax	Unit	Packaging
		(mm)	(mm)	(mm)	(mm)	(kN)		(unit)
HB06-20-DG	10523	0	6	20	M6		ST	100
HB06-30-DG	10524	0	6	30	M6		ST	100
HB08-20-DG	10525	0	8	20	M8		ST	100
HB08-30-DG	10526	0	8	30	M8		ST	100
HB08-40-DG	10527	0	8	40	M8		ST	100
HB10-20-DG	10517	0	10	20	M10		ST	100
HB10-30-DG	10518	0	10	30	M10		ST	100
HB10-40-DG	10519	0	10	40	M10		ST	100
HB10-60-DG	13293	0	10	60	M10		ST	100
HB10-70-DG	14378	0	10	70	M10		ST	100
HB12-20-DG	10520	0	12	20	M12		ST	100
HB12-30-DG	10521	0	12	30	M12		ST	100
HB12-40-DG	10522	0	12	40	M12		ST	100

Mounting instructions:

P. 1/3 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Loa			

Standard:

Max. load:

Load diagram: -

Information

Coupler: -

Equipotential bonding: IEC61537

EC declaration: EC directive 2006/95/EC (Low voltage) as modified by directive 93/68/EEC (CE marking)

FG

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.

Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.

Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,....) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.

DG

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised)

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.

Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.

The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled 'Corrosion classes'). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).

An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461 $\,$

- Using the hot-dip method

Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85μm

Material thickness \geq 3 mm to < 6 mm = min. zinc coating thickness (average) 70 μm

Material thickness \geq 1,5 mm to < 3 mm = = min. zinc coating thickness (average) 55 μm

Material thickness < 1,5 mm = min. zinc coating thickness (average) 45μ m

- Using the drum method

Material thickness \geq 3 mm = min. zinc coating thickness (average) 55 μ m

Material thickness < 3 mm = min. zinc coating thickness (average) 45μ m

Field of application according to resistance against corrosion:

P. 2/3 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Corrosion class	Atmospheric corrosion	Indoor environment	Outdoor environment	Surface treatments
C1	< 0,1μm	Heated buildings with neutral atmospheres: offices, shops, schools, hotels.		Electro-galvanised (EG) EN ISO 2081
C2	0,1 - 0,7μm	Unheated buildings where condensation may occur: sports halls, warehouses, shops.	Bural areas. Atmosphere with low impurities.	Pre-galvanised (PG) EN 10327 – EN 10143
C3	0,7 - 2μm	Production facilities with high moisture levels and some air impurities due to industrial processes: production plants.	City and industrial atmosphere, some impurities, coastal areas with low salt loads.	Dipped-galvanised (DG) EN ISO 1461
C4	2 - 4 µm	Production facilities with high moisture levels and high air impurities due to industrial processes: swimming pools, Chemical industru.	Industrial areas and coastal areas with low salt load.	Dipped-galvanised (DG) EN ISO 1461 Polyester coating (CO) EN ISO 12944
C5-I	4 - 8μm	Polyester coating (CO)	Industrial areas with high moisture level and aggressive atmosphere.	Duplez (DU) (Dipped galvanised • Polyester coating)
C5-M	4-8 µm	EN ISO 12944	Coastal or offshore areas with salt load.	Duplez (DU) (Dipped galvanised • Polyester coating)

P. **3 / 3** Rev01: 05/10/2017